Sunday, October 23, 2016

Bewegende gemiddelde filter ontwerp

Frekwensie van die lopende gemiddeld Filter Die frekwensieweergawe van 'n LTI stelsel is die DTFT van die impulsrespons, Die impulsrespons van 'n L - sample bewegende gemiddelde is sedert die bewegende gemiddelde filter is FIR, die frekwensieweergawe verminder om die eindige som Ons kan die baie nuttig identiteit gebruik om die frekwensie reaksie as waar ons toelaat dat AE minus jomega skryf. N 0, en M L minus 1. Ons kan belangstel in die omvang van hierdie funksie word ten einde te bepaal watter frekwensies te kry deur middel van die filter unattenuated en wat verswakte. Hier is 'n plot van die omvang van hierdie funksie lyk, vir L 4 (rooi), 8 (groen) en 16 (blou). Die horisontale as wissel van nul tot pi radiale per monster. Let daarop dat in al drie gevalle, die frekwensieweergawe het 'n laagdeurlaat kenmerk. 'N konstante komponent (nul frekwensie) in die insette gaan deur die filter unattenuated. Sekere hoër frekwensies, soos pi / 2, is heeltemal uitgeskakel word deur die filter. Maar, as die bedoeling was om 'n laagdeurlaatfilter ontwerp, dan het ons nie baie goed gedoen. Sommige van die hoër frekwensies is verswakte net met 'n faktor van ongeveer 1/10 (vir die 16 punt bewegende gemiddelde) of 1/3 (vir die vier punt bewegende gemiddelde). Ons kan baie beter as dit doen. Bogenoemde plot is geskep deur die volgende Matlab kode: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 ) (1-exp (-iomega8)) ./ (1-exp (-iomega)) H16 (1/16) (1-exp (-iomega16)) ./ (1-exp (-iomega)) plot (omega , ABS (H4) ABS (H8) ABS (H16)) as (0, PI, 0, 1) Kopiereg kopie 2000- - Universiteit van Kalifornië, BerkeleyIntroduction om Filtering 9.3.1 Inleiding tot Filtering op die gebied van sein prosessering van die ontwerp van digitale sein filters behels die proses van die onderdrukking van sekere frekwensies en die bevordering van ander. 'N Vereenvoudigde filter model is waar die insetsein word aangepas om die uittreesein met behulp van die rekursie formule Die implementering van (9-23) is eenvoudig en vereis slegs begin waardes verkry, dan word verkry deur eenvoudig iterasie. Sedert die seine 'n beginpunt moet hê, is dit algemeen om te eis dat en vir. Ons beklemtoon die konsep deur die volgende omskrywing te vervang. Definisie 9.3 (Oorsaaklike Volgorde) Gegewe die die toevoer en afvoer rye. As en vir, is die volgorde sê vir oorsaaklike wees. Gegewe die oorsaaklike volgorde, is dit maklik om die oplossing vir (23/09) te bereken. Gebruik die feit dat hierdie reekse is oorsaaklike: Die algemene iteratiewe stap is 9.3.2 Die Basiese filters Die volgende drie vereenvoudig basiese filters dien as illustrasies. (I) Nulstellen filter, (let op dat). (Ii) Boos Up Filter, (let op dat). (Iii) Kombinasie Filter. Die oordragfunksie vir hierdie model filters het die volgende algemene vorm waar die Z-transforms van die toevoer en afvoer rye is en, onderskeidelik. In die vorige artikel het ons genoem dat die algemene oplossing vir 'n homogene verskilvergelyking is stabiel slegs indien die nulpunte van die karakteristieke vergelyking leuen in die eenheidsirkel. Net so, as 'n filter is stabiel dan die pole van die oordragfunksie moet al lê binne-in die eenheidsirkel. Voor die ontwikkeling van die algemene teorie, wil ons graag die amplitude reaksie te ondersoek wanneer die insetsein is 'n lineêre kombinasie van en. Die amplitude reaksie vir die frekwensie gebruik die komplekse eenheid sein, en word gedefinieer om die formule vir sal streng verduidelik na 'n paar inleidende voorbeelde wees. Voorbeeld 9.21. Gegewe die filter. 9.21 (a). Toon dat dit 'n Nulstellen uit filter vir die seine en en bereken die amplitude reaksie. 9.21 (b). Bereken die amplitude antwoorde en ondersoek die die gefilterde sein vir. 9.21 (c). Bereken die amplitude antwoorde en ondersoek die die gefilterde sein vir. Figuur 9.4. Die amplitude reaksie vir. Figuur 9.5. Die toevoer en afvoer. Figuur 9.6. Die toevoer en afvoer. Vind Oplossing 9.21. Voorbeeld 9.22. Gegewe die filter. 9.22 (a). Toon dat dit 'n bevordering tot filter vir die seine en en bereken die amplitude reaksie. 9.22 (b). Bereken die amplitude antwoorde en ondersoek die die gefilterde sein vir. Figuur 9.7. Die amplitude reaksie vir. Figuur 9.8. Die toevoer en afvoer. Vind Oplossing 9.22. 9.3.3 Die Algemene Filter Vergelyking D ie algemene vorm van 'n bevel filter verskilvergelyking is waar en konstantes. Let noukeurig op dat die terme wat betrokke is in die vorm en waar en wat hierdie terme tyd vertraag maak. Die kompakte vorm van die skryf van die verskilvergelyking is waar die insetsein word aangepas om die uittreesein met behulp van die rekursie formule Die gedeelte sal nul seine en sal hupstoot aan seine te verkry. Opmerking 9.14. Formule (31/09) staan ​​bekend as die rekursie vergelyking en die rekursie koëffisiënte is en. Dit wys uitdruklik dat die huidige produksie is 'n funksie van die afgelope waardes, vir die huidige insette, en die vorige insette vir. Die herhalings kan beskou word as seine en hulle is nul vir negatiewe indekse. Met hierdie inligting kan ons nou die algemene formule vir die oordragfunksie te definieer. Die gebruik van die tyd vertraag-verskuiwing eiendom vir oorsaaklike rye en neem die z-transform van elke kwartaal in (31/09). ons kry Ons kan faktor uit die opsommings en skryf dit in 'n soortgelyke vorm van vergelyking (9-33) ons kry wat lei tot die volgende belangrike definisie. Definisie 9.4 (oordrag funksie) Die oordragfunksie wat ooreenstem met die volgorde verskilvergelyking (8) gegee word deur Formule (9-34) is die oordragsfunksie vir 'n oneindige impulsrespons filter (IIR filter). In die spesiale geval wanneer die deler is eenheid word dit die oordragsfunksie vir 'n beperkte impulsrespons filter (FIR filter). Definisie 9.5 (Eenheid-Monster Response) Die volgorde ooreenstem met die oordragsfunksie is die eenheid-monster reaksie genoem. Stelling 9.6 (Uitgawe Response) Die uitset reaksie van 'n filter (10) gegee 'n insetsein word gegee deur die inverse z-transformasie en in konvolusie vorm dit gegee word deur 'n Ander belangrike gebruik van die oordragfunksie is om te bestudeer hoe 'n filter raak verskillende frekwensies. In die praktyk is 'n deurlopende tyd sein gemonster teen 'n frekwensie wat ten minste twee keer die hoogste insetsein frekwensie om frekwensie vou-oor, of aliasing vermy. Dit is omdat die Fourier-transform van 'n gemonsterde sein is periodieke met tydperk, hoewel ons dit nie hier sal wees. Aliasing verhoed akkurate herstel van die oorspronklike sein van die monsters. Nou is dit bewys kan word dat die argument van die Fourier-transform kaarte op die z-vlak eenheidsirkel via die formule (9-37), waar die genormaliseerde frekwensie genoem. Daarom is die z-transform geëvalueer op die eenheidsirkel is ook periodieke, behalwe met periode. Definisie 9.6 (Amplitude Response) Die amplitude reaksie word gedefinieer om die grootte van die oordragfunksie geëvalueer aan die komplekse eenheid sein wees. Die formule is (9-38) oor die interval. D ie fundamentele stelling van algebra impliseer dat die teller het wortels (genoem nulle) en die deler het wortels (genoem pale). Die nulle kan gekies word in toegevoegde pare op die eenheidsirkel en vir. Vir stabiliteit, al die pale moet binne die eenheidsirkel en vir. Verder word die pale gekies om reële getalle en / of in toegevoegde pare wees. Dit sal verseker dat die rekursie koëffisiënte is alle reële getalle. IIR filters kan al paal of nul-paal en stabiliteit is 'n bekommernis FIR filters en al nul-filters is altyd stabiel. 9.3.4 Ontwerp van filters in die praktyk rekursie formule (10) word gebruik om die uittreesein te bereken. Dit is egter digitale filter ontwerp gebaseer op die bogenoemde teorie. Een begin met die kies van die ligging van nulle en pale wat ooreenstem met die ontwerp vereistes te filter en die bou van die oordragfunksie. Sedert t koëffisiënte hy in sy regte, al nulle en pale met 'n denkbeeldige komponent moet in toegevoegde pare voorkom. Toe die rekursie koëffisiënte is geïdentifiseer in (13) en gebruik word in (10) om die rekursiewe filter skryf. Beide die teller en die noemer van kan word ingereken in kwadratiese faktore met reële koëffisiënte en moontlik een of twee lineêre faktore met reële koëffisiënte. Die volgende beginsels word gebruik om te bou. (I) Nulstellen Out Faktore te filter die seine en gebruik faktore van die vorm in die teller van. Hulle sal bydra tot die term (ii) Boos Up faktore tot die seine te versterk en gebruik faktore van die formFIR filters, IIR filters, en die lineêre konstante-koëffisiënt verskilvergelyking Kousale bewegende gemiddelde (FIR) Comments nie Weve bespreek stelsels waarin elke monster van die produksie is 'n geweegde som van (sekere van die) die monsters van die insette. Kom ons neem 'n oorsaaklike geweegde som stelsel, waar oorsaaklike beteken dat 'n gegewe uitset monster hang net af van die huidige insette monster en ander insette vroeër in die ry. Nóg lineêre stelsels in die algemeen nie, en eindig impulsrespons stelsels in die besonder, moet oorsaaklike wees. Maar oorsaaklikheid is gerieflik vir 'n soort van analise wat op pad was om gou te verken. As ons simboliseer die insette as waardes van 'n vektor x. en die uitgange as die ooreenstemmende waardes van 'n vektor y. dan so 'n stelsel kan geskryf word as waar die b waardes quotweightsquot toegepas word om die huidige en vorige insette monsters om die huidige uitset monster te kry. Ons kan dink aan die uitdrukking as 'n vergelyking met die gelykaanteken wat beteken gelykes, of as 'n prosedurele onderrig, met die gelykaanteken wat beteken opdrag. Kom ons skryf die uitdrukking vir elke uitset monster as 'n MATLAB lus van opdrag state, waar x is 'n N-lengte vektor van insette monsters, en b is 'n M-lengte vektor van gewigte. Ten einde te gaan met die spesiale geval aan die begin, sal ons x insluit in 'n meer vektor xhat wie se eerste M-1 monsters is nul. Ons sal die geweegde opsomming vir elke y (N) as 'n innerlike produk te skryf, en sal 'n paar wysigings van die insette te doen (soos b omkeer) vir hierdie doel. Hierdie soort stelsel word dikwels bekend as 'n bewegende gemiddelde filter, vir ooglopende redes. Van ons vroeër besprekings, moet dit duidelik dat so 'n stelsel is lineêre en verskuiwing-invariante wees. Natuurlik sou dit baie vinniger wees om die MATLAB konvolusie funksie conv (gebruik) in plaas van ons mafilt (). In plaas van die oorweging van die eerste M-1 monsters van die insette tot nul, ons hulle kan oorweeg om dieselfde as die laaste M-1 monsters wees. Dit is dieselfde as die behandeling van die insette as periodieke. Wel gebruik cmafilt () as die naam van die funksie, 'n klein verandering van die vroeër mafilt () funksie. In die bepaling van die impulsrespons van 'n stelsel, is daar gewoonlik geen verskil tussen die twee, aangesien alle nie-aanvanklike monsters van die insette is nul: Aangesien 'n stelsel van hierdie aard is lineêre en skuif-invariante, ons weet dat die uitwerking daarvan op enige sinusgolf sal slegs volgens skaal en skuif dit. Hier is dit sake wat ons gebruik die omsendbrief weergawe Die sirkulêr-gekonvuleerde weergawe geskuif en afgeskaal 'n bietjie, terwyl die weergawe met gewone konvolusie verwring aan die begin. Kom ons kyk wat die presiese skalering en verskuiwing is deur die gebruik van 'n FFT: Beide toevoer en afvoer het amplitude net by frekwensies 1 en -1, wat is soos dit moet wees, aangesien die insette was 'n sinusgolf en die stelsel was lineêre. Die uitset waardes groter deur 'n verhouding van 10,6251 / 8 1,3281. Dit is die wins van die stelsel. Wat van die fase Ons moet net om te kyk waar die amplitude is nie-nul: Die insette het 'n fase van pi / 2, soos ons versoek. Die uitset fase verskuif met 'n bykomende 1,0594 (met teenoorgestelde teken vir die negatiewe frekwensie), of oor 1/6 van 'n siklus van die reg, soos ons kan sien op die grafiek. Nou kan probeer om 'n sinusgolf met dieselfde frekwensie (1), maar in plaas van amplitude 1 en fase pi / 2, Kom ons probeer amplitude 1,5 en fase 0. Ons weet dat net frekwensie 1 en -1 nie-nul amplitude sal hê, so laat net kyk na hulle: weereens die amplitude verhouding (15,9377 / 12,0000) is 1,3281 - en as vir die fase dit weer verskuif deur 1,0594 as hierdie voorbeelde is tipiese, kan ons die effek van ons stelsel (impulsrespons 0,1 0,2 voorspel 0,3 0,4 0,5) op enige sinusgolf met frekwensie 1 - die amplitude sal verhoog word met 'n faktor van 1,3281 en die (positiewe frekwensie) fase sal verskuif deur 1,0594. Ons kan gaan op na die uitwerking van hierdie stelsel op sinusoïede van ander frekwensies bereken deur dieselfde metodes. Maar daar is 'n baie makliker manier, en een wat die algemene punt vestig. Sedert (omsendbrief) konvolusie in die tydgebied beteken vermenigvuldiging in die frekwensiedomein, daaruit volg dat Met ander woorde, die DFT van die impulsrespons is die verhouding van die DFT van die uitset na die DFT van die insette. In hierdie verband die DFT koëffisiënte is komplekse getalle. Sedert ABS (C1 / C2) ABS (c1) / ABS (C2) vir alle komplekse getalle C1, C2, hierdie vergelyking vertel ons dat die amplitude spektrum van die impulsrespons altyd die verhouding van die amplitude spektrum van die uitset na wat sal wees van die insette. In die geval van die fase spektrum, hoek (C1 / C2) hoek (c1) - hoek (C2) vir alle C1, C2 (word met dien verstande dat fases verskil deur n2pi gelyk beskou). Daarom is die fase spektrum van die impulsrespons sal altyd die verskil tussen die fase spektra van die uitset en die insette (met alles wat regstellings deur 2pi is nodig om die resultaat tussen - pi en pi hou) wees. Ons kan die fase-effekte sien meer duidelik as ons oop maak die voorstelling van fase, dit wil sê as ons verskeie veelvoude voeg van 2pi as wat nodig is om die spronge wat geproduseer word deur die periodieke aard van die () funksie hoek te verminder. Hoewel die amplitude en fase gewoonlik gebruik vir grafiese en selfs 'n tabel aanbieding, want hulle is 'n intuïtiewe manier om te dink oor die gevolge van 'n stelsel op die verskillende frekwensie komponente van sy insette, die komplekse Fourier koëffisiënte is meer nuttig algebraïes, omdat hulle toelaat die eenvoudige uitdrukking van die verhouding die algemene benadering wat ons so pas gesien sal saam met arbitrêre filters van die tipe geskets, waarin elke uitset monster is 'n geweegde som van sommige stel insette monsters. Soos vroeër genoem, is hierdie dikwels genoem Eindige Impulse Response filters, omdat die impulsrespons is van beperkte omvang, of soms Moving Gemiddelde filters. Ons kan die frekwensieweergawe kenmerke van so 'n filter van die FFT van sy impulsrespons te bepaal, en ons kan ook nuwe filters met gewenste eienskappe te ontwerp deur IFFT van 'n spesifikasie van die frekwensieweergawe. Outoregressiewe (IIR) Filters Daar sal min punt in 'name vir FIR filters wees, tensy daar was 'n paar ander soort (e) om hulle te onderskei van, en so diegene wat bestudeer pragmatiek sal nie verbaas wees om te verneem dat daar wel nog 'n groot soort lineêre tyd-invariante filter. Hierdie filters is soms genoem rekursiewe omdat die waarde van die vorige uitsette (asook vorige insette) aangeleenthede, hoewel die algoritmes in die algemeen geskryf met behulp van iteratiewe konstrukte. Hulle word ook genoem Oneindige Impulse Response (IIR) filters, want in die algemeen hul reaksie op 'n impuls gaan op tot in ewigheid. Hulle word ook soms genoem outoregressiewe filters, omdat die koëffisiënte kan beskou word as die gevolg van doen lineêre regressie te sein waardes uit te druk as 'n funksie van vroeër sein waardes. Die verhouding van EIR en OIR filters kan duidelik gesien word in 'n lineêre konstante-koëffisiënt verskilvergelyking, dit wil sê die oprigting van 'n geweegde som van uitsette gelykstaande aan 'n geweegde som van insette. Dit is soos die vergelyking wat ons vroeër het vir die oorsaaklike FIR filter, behalwe dat bykomend tot die geweegde som van insette, ons het ook 'n geweegde som van uitsette. As ons wil hê om te dink aan dit as 'n prosedure vir die opwekking van uitset monsters, moet ons die vergelyking herrangskik om 'n uitdrukking vir die huidige uitset monster y (N) te kry, die aanneming van die konvensie dat 'n (1) 1 (soos deur skalering ander as en BS), ons kan ontslae te raak van die 1 / n (1) term: y (n) b (1) x (n) b (2) x (n-1). b (LW1) x (N-NB) - 'n (2) y (N-1) -. - 'N (Na1) y (N-na) As al die n (N) buiten 'n (1) is nul, dit verminder na ons ou vriend die oorsaaklike FIR filter. Dit is die algemene geval van 'n (kousale) LTI filter, en geïmplementeer word deur die MATLAB funksie filter. Kom ons kyk na die geval waar die ander as b b koëffisiënte (1) is nul (in plaas van die FIR geval, waar die n (N) is nul): In hierdie geval, die huidige uitset monster y (N) word bereken as 'n geweegde kombinasie van die huidige insette monster x (n) en die vorige uitset monsters y (n-1), y (n-2), ens Om 'n idee te kry van wat gebeur met sulke filters kry, kan ons begin met die geval waar: dit wil sê, die huidige uitset monster is die som van die huidige insette monster en die helfte van die vorige uitset monster. Wel neem 'n inset impuls deur 'n paar keer stappe, een op 'n slag. Dit moet duidelik op hierdie punt dat ons maklik 'n uitdrukking vir die nde uitset monster waarde kan skryf: dit is net (As MATLAB getel vanaf 0, sou dit eenvoudig .5n wees). Sedert wat ons berekening is die impulsrespons van die stelsel, het ons gedemonstreer deur 'n voorbeeld dat die impulsrespons, want dit kan hê oneindig baie nie-nul monsters. Om hierdie triviale eerste-orde filter in MATLAB te implementeer, kan ons gebruik filter. Die oproep sal lyk: en die resultaat is: Is hierdie besigheid eintlik nog lineêr Ons kan kyk na hierdie empiries: Vir 'n meer algemene benadering, oorweeg die waarde van 'n uitset monster y (N). Deur opeenvolgende vervanging kan ons dit skryf, want dit is net soos ons ou vriend die konvolusie-som vorm van 'n FIR filter, met die impulsrespons deur die uitdrukking .5k. en die lengte van die impulsrespons om oneindig. So dieselfde argumente wat ons gebruik om te wys dat FIR filters was lineêre sal nou hier van toepassing. Tot dusver dit mag lyk soos 'n groot bohaai oor nie veel nie. Wat is hierdie hele lyn van ondersoek goed vir Wel beantwoord hierdie vraag in fases, wat begin met 'n voorbeeld. Dit is nie 'n groot verrassing dat ons kan bereken 'n gemonsterde eksponensiële deur rekursiewe vermenigvuldiging. Kom ons kyk na 'n rekursiewe filter dat daar iets minder voor die hand liggend nie. Hierdie keer goed maak dit 'n tweede-orde filter, sodat die oproep om te filter van die vorm sal wees Kom stel die tweede uitset koëffisiënt a2 om -2cos (2pi / 40), en die derde uitset koëffisiënt A3 tot 1, en kyk na die impulsrespons. Nie baie nuttig as 'n filter, eintlik, maar dit genereer 'n gemonsterde sinusgolf (van 'n impuls) met drie vermenigvuldig-voeg per monster Ten einde te verstaan ​​hoe en hoekom dit doen dit, en hoe rekursiewe filters kan ontwerp en in ontleed die meer algemene geval, moet ons terug te stap en 'n blik op 'n paar ander eienskappe van komplekse getalle, op pad na die begrip van die Z transform. Moving Gemiddelde filter (MA filter) laai. Die bewegende gemiddelde filter is 'n eenvoudige Low Pass FIR (Eindige Impulse Response) filter wat algemeen gebruik word vir glad 'n verskeidenheid van monsters data / sein. Dit neem M monsters van insette op 'n tyd en neem die gemiddelde van die M-monsters en produseer 'n enkele uitset punt. Dit is 'n baie eenvoudige LPF (laaglaatfilter) struktuur wat handig te pas kom vir wetenskaplikes en ingenieurs om ongewenste lawaaierige komponent filter van die beoogde data. As die filter lengte toeneem (die parameter M) die gladheid van die uitset verhoog, terwyl die skerp oorgange in die data gemaak word toenemend stomp. Dit impliseer dat die filter het 'n uitstekende tyd domein reaksie, maar 'n swak frekwensieweergawe. Die MA filter voer drie belangrike funksies: 1) Dit neem M insette punte, bere die gemiddelde van die M-punte en produseer 'n enkele uitset punt 2) As gevolg van die berekening / berekeninge betrokke. die filter stel 'n definitiewe bedrag van die vertraging 3) Die filter dien as 'n laaglaatfilter (met 'n swak frekwensiedomein reaksie en 'n goeie tyd domein reaksie). Matlab Kode: Na aanleiding van Matlab kode simuleer die tydgebied reaksie van 'n M-punt bewegende gemiddelde filter en ook plotte die frekwensieweergawe vir verskeie filter lengtes. Tyd Domain Reaksie: Op die eerste plot, ons het die insette wat gaan in die bewegende gemiddelde filter. Die insette is raserig en ons doel is om die geraas te verminder. Die volgende figuur is die uitset reaksie van 'n 3-punt bewegende gemiddelde filter. Dit kan afgelei word uit die figuur dat die 3-punt bewegende gemiddelde filter nie veel in die filter van die geraas gedoen het. Ons verhoog die filter krane tot 51-punte en ons kan sien dat die geraas in die uitset baie, wat uitgebeeld word in die volgende figuur verminder. Ons verhoog die krane verder tot 101 en 501 en ons kan waarneem dat selfs-al die geraas is amper nul, die oorgange is drasties afgestomp uit (kyk na die helling op die weerskante van die sein en vergelyk kan word met die ideale baksteenmuur oorgang in ons insette). Frekwensie: Van die frekwensieweergawe dit kan beweer dat die roll-off is baie stadig en die stop orkes verswakking is nie goed nie. Gegewe hierdie stop-band attenuasie, duidelik, die bewegende gemiddelde filter kan nie een band van frekwensies van 'n ander te skei. Soos ons weet dat 'n goeie vertoning in die tydgebied resultate in 'n swak vertoning in die frekwensiedomein, en omgekeerd. In kort, die bewegende gemiddelde is 'n buitengewoon goeie glad filter (die aksie in die tydgebied), maar 'n besonder slegte laaglaatfilter (die aksie in die frekwensiedomein) Eksterne skakel: aanbevole boeke: Primêre SidebarThe bewegende gemiddelde as 'n Filter die bewegende gemiddelde is dikwels gebruik vir glad data in die teenwoordigheid van ruis. Die eenvoudige bewegende gemiddelde is nie altyd erken as die Eindige Impulse Response (FIR) filter dat dit, terwyl dit eintlik een van die mees algemene filters in seinverwerking. Die behandeling van dit as 'n filter kan vergelyk dit met byvoorbeeld met venster-sed filters (sien die artikels oor lae-pass. Hoë-pass. En orkes-pass en orkes-verwerp filters vir voorbeelde van diegene). Die groot verskil met dié filters is dat die bewegende gemiddelde is geskik vir seine waarvoor die nuttige inligting is vervat in die tydgebied. waarvan glad metings deur die gemiddeld is 'n uitstekende voorbeeld. 'N klein venster-sed filters, aan die ander kant, is sterk presteerders in die frekwensiedomein. met gelykmaking in klank verwerking as 'n tipiese voorbeeld. Daar is 'n meer gedetailleerde vergelyking van beide tipes filters in Time Domain teen frekwensiedomein Performance filters. As jy inligting soek wat beide die tyd en die frekwensie domein is belangrik, dan kan jy 'n blik op variasies op die bewegende gemiddelde het. wat bied 'n aantal geweegde weergawes van die bewegende gemiddelde wat beter op daardie is. Die bewegende gemiddelde lengte (N) kan gedefinieer word as geskryf soos dit tipies is geïmplementeer, met die huidige uitset monster as die gemiddelde van die vorige (N) monsters. Gesien word as 'n filter, die bewegende gemiddelde voer 'n konvolusie van die insette volgorde (xn) met 'n vierkantige pols van lengte (N) en hoogte (1 / N) (om die oppervlakte van die pols te maak, en dus die wins van die filter, een). In die praktyk is dit die beste om (N) vreemd neem. Hoewel 'n bewegende gemiddelde ook kan bereken word met behulp van 'n gelyke getal monsters, met behulp van 'n vreemde waarde vir (N) het die voordeel dat die vertraging van die filter 'n heelgetal van monsters sal wees nie, aangesien die vertraging van 'n filter met (N) monsters is presies ((N-1) / 2). Die bewegende gemiddelde kan dan presies in lyn wees met die oorspronklike data deur die verskuiwing dit deur 'n heelgetal van monsters. Tyd Domain Sedert die bewegende gemiddelde is 'n konvolusie met 'n vierkantige pols, sy frekwensieweergawe is 'n sed funksie. Dit maak dit iets soos die dubbele van die klein venster-sed filter, want dit is 'n konvolusie met 'n sed pols wat lei tot 'n vierkantige frekwensieweergawe. Dit is hierdie sed frekwensieweergawe dat die bewegende gemiddelde n swak presteerder in die frekwensiedomein maak. Maar dit doen baie goed in die tydgebied. Daarom is dit ideaal om data glad geraas te verwyder, terwyl op dieselfde tyd nog 'n vinnige stap reaksie (figuur 1) hou. Vir die tipiese byvoeging Wit Gaussiese ruis (SWGR) wat dikwels aanvaar, gemiddeld (N) monsters het die effek van die verhoging van die SNR met 'n faktor van (sqrt N). Sedert die geraas vir die individuele monsters is ongekorreleerd, daar is geen rede om elke monster anders te behandel. Vandaar die bewegende gemiddelde, wat elke monster dieselfde gewig gee, sal ontslae te raak van die maksimum bedrag van geraas vir 'n gegewe stap reaksie skerp. Implementering Omdat dit 'n FIR filter, kan die bewegende gemiddelde geïmplementeer deur konvolusie. Dit sal dan dieselfde doeltreffendheid (of die gebrek daaraan) as enige ander FIR filter. Maar dit kan ook rekursief geïmplementeer, in 'n baie doeltreffende manier. Dit volg direk uit die definisie dat hierdie formule is die gevolg van die uitdrukkings vir (yn) en (yn1), dit wil sê, waar ons sien dat die verandering tussen (yn1) en (yn) is dat 'n ekstra termyn (xn1 / N) verskyn aan die einde, terwyl die term (xn-N1 / N) van die begin af verwyder. In praktiese toepassings, is dit dikwels moontlik om uit te laat die verdeling deur (N) vir elke kwartaal deur vergoed vir die gevolglike wins van (N) in 'n ander plek. Dit rekursiewe implementering sal baie vinniger as konvolusie wees. Elke nuwe waarde van (y) kan bereken word met net twee toevoegings, in plaas van die (N) toevoegings wat vir 'n eenvoudige implementering van die omskrywing nodig sou wees. Een ding om op die uitkyk vir 'n rekursiewe implementering is dat afrondingsfoute sal ophoop. Dit mag of mag nie 'n probleem vir jou aansoek nie, maar dit beteken ook dat dit rekursiewe implementering eintlik beter met 'n heelgetal implementering sal werk as met swaai-punt getalle. Dit is nogal 'n ongewone, aangesien 'n drywende punt implementering is gewoonlik makliker. Die sluiting van dit alles moet wees dat jy nooit die nut van die eenvoudige bewegende gemiddelde filter in seinverwerking aansoeke moet onderskat nie. Filterontwerp Tool Hierdie artikel word aangevul met 'n Filter Ontwerp instrument. Eksperimenteer met verskillende waardes vir (N) en visualiseer die gevolglike filters. Probeer dit nou


No comments:

Post a Comment