Friday, October 7, 2016

Sentraal bewegende gemiddelde voorbeeld

Bewegende gemiddelde Hierdie voorbeeld leer jy hoe om die bewegende gemiddelde van 'n tydreeks in Excel te bereken. 'N bewegende avearge gebruik te stryk onreëlmatighede (pieke en dale) om maklik tendense herken. 1. In die eerste plek kan 'n blik op ons tyd reeks. 2. Klik op die blad Data, kliek Data-analise. Nota: cant vind die Data-analise knoppie Klik hier om die analise ToolPak add-in te laai. 3. Kies bewegende gemiddelde en klik op OK. 4. Klik op die insette Range boks en kies die reeks B2: M2. 5. Klik op die boks interval en tik 6. 6. Klik in die uitset Range boks en kies sel B3. 8. Teken 'n grafiek van hierdie waardes. Verduideliking: omdat ons die interval stel om 6, die bewegende gemiddelde is die gemiddeld van die vorige 5 datapunte en die huidige data punt. As gevolg hiervan, is pieke en dale stryk uit. Die grafiek toon 'n toenemende tendens. Excel kan nie bereken die bewegende gemiddelde vir die eerste 5 datapunte, want daar is nie genoeg vorige datapunte. 9. Herhaal stappe 2 tot 8 vir interval 2 en interval 4. Gevolgtrekking: Hoe groter die interval, hoe meer die pieke en dale is glad nie. Hoe kleiner die interval, hoe nader die bewegende gemiddeldes is om die werklike data punte. Hou jy van hierdie gratis webwerf Deel asseblief hierdie bladsy op GoogleTaking n bewegende gemiddelde is 'smoothing proses 'n Alternatiewe manier om die verlede data op te som is om die gemiddelde van opeenvolgende kleiner stelle nommers van vorige data soos volg bereken. Onthou die versameling getalle 9, 8, 9, 12, 9, 12, 11, 7, 13, 9, 11, 10, wat die dollar bedrag van 12 verskaffers lukraak gekies was. Kom ons stel (M), die grootte van die kleiner stel gelyk aan 3. Dan is die gemiddeld van die eerste 3 nommers: (9 8 9) / 3 8,667. Dit staan ​​bekend as glad (dit wil sê een of ander vorm van gemiddelde). Dit glad proses word voortgesit deur die bevordering van 'n tydperk en die berekening van die volgende gemiddelde van drie getalle, die weglating van die eerste getal. Bewegende gemiddelde voorbeeld Die volgende tabel som die proses, wat verwys na die verskuiwing Berekening van gemiddelde. Die algemene uitdrukking vir die bewegende gemiddelde is Mt frac cdots X. Resultate van Moving AverageWhen berekening 'n lopende bewegende gemiddelde, die plasing van die gemiddelde in die middel tydperk sinvol In die vorige voorbeeld het ons bereken die gemiddeld van die eerste 3 tydperke en sit dit langs tydperk 3. Ons kan die gemiddelde in die geplaas middel van die tyd interval van drie tydperke, dit is, langs tydperk 2. dit werk goed met vreemde tydperke, maar nie so goed vir selfs tydperke. So waar sou ons plaas die eerste bewegende gemiddelde wanneer M 4 Tegnies, sou die bewegende gemiddelde op t 2.5, 3.5 val. Om hierdie probleem wat ons glad Mas using 2. So glad ons die stryk waardes As ons gemiddeld 'n gelyke getal terme te vermy, moet ons die stryk waardes glad Die volgende tabel toon die resultate met behulp van M 4.David, Ja, MapReduce is bedoel is om te werk op 'n groot hoeveelheid data. En die idee is dat in die algemeen, die kaart en die vermindering van funksies shouldn39t sorg hoeveel mappers of hoeveel reducers daar, that39s net optimalisering. As jy mooi oor die algoritme ek gepos dink, kan jy sien dat dit doesn39t aangeleentheid wat Mapper kry wat gedeeltes van die data. Elke insette rekord sal beskikbaar wees om elke verminder operasie wat dit nodig het. â € Joe K 18 September 12 by 22:30 In die beste van my begrip bewegende gemiddelde is nie mooi kaarte te MapReduce paradigma sedert sy berekening in wese is gly venster oor gesorteerde data, terwyl mnr is die verwerking van nie-gesny wissel van gesorteerde data. Oplossing ek sien is soos volg: a) Om te implementeer persoonlike partisioneerder om in staat wees om twee verskillende mure te maak in twee lopies. In elk hardloop jou reducers sal verskillende reekse data te kry en te bereken bewegende gemiddelde waar approprieate Ek sal probeer om te illustreer: In die eerste lopie data vir reducers moet wees: R1: Q1, Q2, Q3, K4 R2: V5, V6, Q7, Q8 . hier sal jy cacluate bewegende gemiddelde vir 'n paar Qs. In volgende lopie moet jou reducers data te kry soos: R1: Q1. V6 R2: V6. Q10 R3: Q10..Q14 En caclulate die res van bewegende gemiddeldes. Dan sal jy nodig het om totaal resultate. Idee van persoonlike partisioneerder dat dit twee modi van die operasie sal moet - elke keer verdeel in gelyke wissel, maar met 'n paar verskuiwing. In 'n pseudokode dit sal lyk. partisie (keySHIFT) / (MAXKEY / numOfPartitions) waar: SHIFT sal geneem word van die opset. MAXKEY maksimum waarde van die sleutel. Ek neem aan vir eenvoud dat hulle begin met 'n nul. RecordReader, IMHO is nie 'n oplossing, want dit is beperk tot spesifieke split en kan nie meer as split grens skuif. Nog 'n oplossing sou wees om te implementeer persoonlike logika van verdeel insette data (dit is deel van die InputFormat). Dit kan gedoen word om 2 verskillende skyfies, soortgelyk aan skeiding te doen. antwoord 17 September 12 aan 8: 59Moving Gemiddeldes: Wat is dit vir die mees gewilde tegniese aanwysers, is bewegende gemiddeldes gebruik om die rigting van die huidige tendens meet. Elke tipe bewegende gemiddelde (algemeen in hierdie handleiding as MA geskryf) is 'n wiskundige gevolg dat word bereken deur die gemiddeld van 'n aantal van die verlede datapunte. Sodra bepaal, die gevolglike gemiddelde is dan geplot op 'n grafiek, sodat die handelaars om te kyk na reëlmatige data eerder as om te fokus op die dag-tot-dag prysskommelings wat inherent in alle finansiële markte is. Die eenvoudigste vorm van 'n bewegende gemiddelde, gepas bekend as 'n eenvoudige bewegende gemiddelde (SMA), word bereken deur die rekenkundige gemiddelde van 'n gegewe stel waardes. Byvoorbeeld, 'n basiese 10-dae - bewegende gemiddelde wat jy wil voeg tot die sluiting pryse van die afgelope 10 dae en dan verdeel die gevolg van 10. In Figuur 1 te bereken, die som van die pryse vir die afgelope 10 dae (110) is gedeel deur die aantal dae (10) om te kom op die 10-dae gemiddelde. As 'n handelaar wil graag 'n 50-dag gemiddelde sien in plaas daarvan, sal dieselfde tipe berekening gemaak word, maar dit sal die pryse sluit oor die afgelope 50 dae. Die gevolglike gemiddelde hieronder (11) in ag neem die afgelope 10 datapunte om handelaars 'n idee van hoe 'n bate relatiewe is geprys om die afgelope 10 dae te gee. Miskien is jy wonder hoekom tegniese handelaars noem hierdie hulpmiddel 'n bewegende gemiddelde en nie net 'n gewone gemiddelde. Die antwoord is dat as nuwe waardes beskikbaar is, moet die oudste datapunte laat val van die stel en nuwe data punte moet kom om dit te vervang. So, is die datastel voortdurend in beweging om rekenskap te gee nuwe data soos dit beskikbaar raak. Hierdie metode van berekening verseker dat slegs die huidige inligting word verreken. In Figuur 2, sodra die nuwe waarde van 5 word by die stel, die rooi boks (wat die afgelope 10 datapunte) na regs beweeg en die laaste waarde van 15 laat val van die berekening. Omdat die relatief klein waarde van 5 die hoë waarde van 15 vervang, sou jy verwag om die gemiddeld van die datastel afname, wat dit nie sien nie, in hierdie geval van 11 tot 10. Wat Moet Bewegende Gemiddeldes lyk as die waardes van die MA is bereken, hulle geplot op 'n grafiek en dan gekoppel aan 'n bewegende gemiddelde lyn te skep. Hierdie buig lyne is algemeen op die kaarte van tegniese handelaars, maar hoe dit gebruik word kan drasties wissel (meer hieroor later). Soos jy kan sien in Figuur 3, is dit moontlik om meer as een bewegende gemiddelde om enige term voeg deur die aanpassing van die aantal tydperke gebruik word in die berekening. Hierdie buig lyne kan steurende of verwarrend lyk op die eerste, maar jy sal groei gewoond aan hulle soos die tyd gaan aan. Die rooi lyn is eenvoudig die gemiddelde prys oor die afgelope 50 dae, terwyl die blou lyn is die gemiddelde prys oor die afgelope 100 dae. Nou dat jy verstaan ​​wat 'n bewegende gemiddelde is en hoe dit lyk, goed in te voer 'n ander tipe van bewegende gemiddelde en kyk hoe dit verskil van die voorheen genoem eenvoudig bewegende gemiddelde. Die eenvoudige bewegende gemiddelde is uiters gewild onder handelaars, maar soos alle tegniese aanwysers, dit het sy kritici. Baie individue argumenteer dat die nut van die SMA is beperk omdat elke punt in die datareeks dieselfde geweeg, ongeag waar dit voorkom in die ry. Kritici argumenteer dat die mees onlangse data is belangriker as die ouer data en moet 'n groter invloed op die finale uitslag het. In reaksie op hierdie kritiek, handelaars begin om meer gewig te gee aan onlangse data, wat sedertdien gelei tot die uitvinding van die verskillende tipes van nuwe gemiddeldes, die gewildste van wat is die eksponensiële bewegende gemiddelde (EMA). (Vir verdere inligting, sien Basics gelaaide bewegende gemiddeldes en Wat is die verskil tussen 'n SMA en 'n EMO) Eksponensiële bewegende gemiddelde Die eksponensiële bewegende gemiddelde is 'n tipe van bewegende gemiddelde wat meer gewig gee aan onlangse pryse in 'n poging om dit meer ontvanklik maak om nuwe inligting. Leer die ietwat ingewikkeld vergelyking vir die berekening van 'n EMO kan onnodige vir baie handelaars wees, aangesien byna al kartering pakkette doen die berekeninge vir jou. Maar vir jou wiskunde geeks daar buite, hier is die EMO vergelyking: By die gebruik van die formule om die eerste punt van die EMO bereken, kan jy agterkom dat daar geen waarde beskikbaar is om te gebruik as die vorige EMO. Hierdie klein probleem opgelos kan word deur die begin van die berekening van 'n eenvoudige bewegende gemiddelde en die voortsetting van die bogenoemde formule van daar af. Ons het jou voorsien van 'n monster spreadsheet wat die werklike lewe voorbeelde van hoe om beide 'n eenvoudige bewegende gemiddelde en 'n eksponensiële bewegende gemiddelde te bereken sluit. Die verskil tussen die EMO en SMA Nou dat jy 'n beter begrip van hoe die SMA en die EMO bereken word, kan 'n blik op hoe hierdie gemiddeldes verskil. Deur te kyk na die berekening van die EMO, sal jy agterkom dat meer klem gelê op die onlangse data punte, maak dit 'n soort van geweegde gemiddelde. In Figuur 5, die nommers van tydperke wat in elk gemiddeld is identies (15), maar die EMO reageer vinniger by die veranderende pryse. Let op hoe die EMO het 'n hoër waarde as die prys styg, en val vinniger as die SMA wanneer die prys daal. Dit reaksie is die hoofrede waarom so baie handelaars verkies om die EMO gebruik oor die SMA. Wat doen die verskillende dae gemiddelde bewegende gemiddeldes is 'n heeltemal aanpas aanwyser, wat beteken dat die gebruiker vrylik kan kies watter tyd raam wat hulle wil wanneer die skep van die gemiddelde. Die mees algemene tydperke wat in bewegende gemiddeldes is 15, 20, 30, 50, 100 en 200 dae. Hoe korter die tydsduur wat gebruik word om die gemiddelde te skep, hoe meer sensitief sal wees om die prys veranderinge. Hoe langer die tydsverloop, hoe minder sensitief, of meer reëlmatige, die gemiddelde sal wees. Daar is geen regte tyd raam te gebruik wanneer die opstel van jou bewegende gemiddeldes. Die beste manier om uit te vind watter een werk die beste vir jou is om te eksperimenteer met 'n aantal verskillende tydperke totdat jy die een wat jou strategie pas te vind. Bewegende gemiddeldes: Hoe om dit te gebruik Skryf Nuus om te gebruik vir die nuutste insigte en ontleding Dankie vir jou inskrywing om Investopedia insigte - Nuus om te gebruik.


No comments:

Post a Comment